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Abstract It is a little over 75 years since two of the most important mathematicians of the 20th century collabo-
rated on finding the exact solution of a particular equation with semi-infinite convolution type integral operator. The
elegance and analytical sophistication of the method, now called the Wiener–Hopf technique, impress all who use
it. Its applicability to almost all branches of engineering, mathematical physics and applied mathematics is borne
out by the many thousands of papers published on the subject since its conception. The Wiener–Hopf technique
remains an extremely important tool for modern scientists, and the areas of application continue to broaden. This
special issue of the Journal of Engineering Mathematics is dedicated to the work of Wiener and Hopf, and includes
a number of articles which demonstrate the relevance of the technique to a representative range of model problems.
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1 Norbert Wiener and Eberhard Hopf

In retrospect, it seems an unlikely collaboration: American born Norbert Wiener (1894–1964) and Austrian born
Eberhard Hopf (1902–1983). The former was of European Jewish descent1 whilst the latter was educated in Berlin
and, despite the prevailing political climate of 1930s Germany, chose to return from a position at the Massachusetts
Institute of Technology (MIT) to take up a chair at the University of Leipzig in 1936. Individually, both men were
powerful mathematicians who contributed to quite diverse areas of mathematics. To the general public Norbert
Wiener is widely recognised as the founder of modern cybernetics. To mathematicians, however, he is primarily
known for his highly innovative and fundamental work in what is now termed stochastic processes. His interest in
randomness began in the early 1920s with studies of Brownian motion. This led him to harmonic analysis, Tauberian
theorems and eventually to Paley–Wiener theory which was subsequently used to study problems involving more

1 Wiener’s mother was from a German family whilst his father, Leo Wiener, originated from Bialystock a town then in Tsarist Russia.

J. B. Lawrie (B)
Department of Mathematical Sciences, Brunel University, Uxbridge UB8 3PH, UK
e-mail: jane.lawrie@brunel.ac.uk

I. D. Abrahams
School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
e-mail: i.d.abrahams@manchester.ac.uk

123



352 J. B. Lawrie, I. D. Abrahams

general stochastic processes. Eberhard Hopf, on the other hand, is known primarily for his work in ergodic theory
and partial differential equations—his bifurcation theory is a particular tour de force that is still used repeatedly
today as a central element of stability analysis and dynamical systems theory.

The two men differed greatly in personality. Wiener is widely acknowledged as having been absent-minded2 and
his papers were hard to read: sometimes difficult results appeared with scarcely a proof and at other times he would
present a lengthy proof of a triviality! It is also said that Wiener’s lectures were difficult and often without structure.
In contrast, Hopf was an excellent communicator: he had the ability to illuminate the most complex subjects and
render them palatable to his colleagues and even to non-specialists.

2 The Wiener–Hopf technique

In 1930, having completed his Habilitation in Mathematical Astronomy at the University of Berlin, Hopf received
a fellowship from the Rockefeller Foundation to study classical mechanics with Birkhoff (1884–1944) at Harvard
College Observatory. A year later, and with the help of Norbert Wiener (who was already established at MIT),
he joined the Department of Mathematics at the Massachusetts Institute of Technology on a temporary contract.
The collaboration between Wiener and Hopf was initiated by their mutual interest in the differential equations
governing the radiation equilibrium of stars. In Wiener’s own words [2], “The various types of particle which form
light and matter exist in a sort of balance with one another, which changes abruptly when we pass beyond the
surface of the star. It is easy to set up the equations for this equilibrium, but it is not easy to find a general method
for the solution of these equations.” Their collaboration resulted in the famous paper [3] entitled “Über eine Klasse
singulärer Integralgleichungen” in which they established the tool by which such equations could be solved. Thus,
the Wiener–Hopf technique was first propounded as a means to solve, for f (x), an integral equation of the form3∫ ∞

0
k(x − y)f (y) dy = g(x), 0 < x < ∞, (1)

where k(x − y) is a known difference kernel and g(x) is a specified function defined over the half-line x > 0. For
general readers of this special issue the salient points of the technique are very briefly outlined here; full details can
be found in the textbook by Noble [4], more on which will be mentioned later. The method proceeds by extending
the domain of, or continuing, the integral equation (1) to negative real values of x. Thus, write∫ ∞

0
k(x − y)f (y) dy =

{
g(x), 0 < x < ∞,

h(x), −∞ < x < 0,
(2)

where h(x) is unknown. Fourier transformation of (2) then yields the typical Wiener–Hopf functional equation

G+(α) + H−(α) = F+(α)K(α) (3)

in which H−(α) and F+(α) are half-range Fourier transforms (defined over −∞ to 0 and 0 to ∞, respectively) of
the unknowns h(x) and f (x). By contrast, the quantities G+(α) (half-range Fourier transform of g(x)) and K(α)

(full-range Fourier transform of k(x)) are known functions. The product form of the right-hand side of this equation
is due to the fact that the original integral operator is of convolution type. The subscripts +(−) indicate that the
respective functions are analytic in upper(lower) half regions of the complex α-plane which can be shown to overlap
to form a strip in which all the functions are analytic. The Wiener–Hopf procedure hinges on finding a product
factorization for the Fourier-transformed kernel, in the form

K(α) = K+(α)K−(α) (4)

2 It is said that, after several years teaching at MIT, Wiener and his family moved to a larger house a few blocks away. Knowing that
her husband was forgetful, Mrs Wiener wrote his new address on a piece of paper and gave it to him. However, when he was leaving
his office at the end of the day, Wiener discovered that he had lost her directions and, of course, he could not remember where the new
house was. So he drove to his old house instead (thinking that his wife would eventually come there to look for him). There he saw a
young child and asked her, “Little girl, can you tell me where the Wieners moved?” “Yes, Daddy,” she replied, “Mommy said you’d
probably be here, so she sent me to show you the way home.” This and several other amusing anecdotes can be found in Ref. [1].
3 Shown here for simplicity as a first-kind integral equation, but it often occurs of second-kind.
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which enables (3) to be re-written as
G+(α)

K−(α)
+ H−(α)

K−(α)
= F+(α)K+(α). (5)

Note that the factors on the right-hand side of (4) are also zero-free in their indicated half-planes of analyticity.
Thus, on defining a sum-factorization4 of the form

G+(α)

K−(α)
= L+(α) + L−(α), (6)

it follows that the equation may be re-expressed as

L−(α) + H−(α)

K−(α)
= F+(α)K+(α) − L+(α), (7)

where the left-hand side is analytic in the lower half-plane and the right-hand side is analytic in the overlapping
upper half region. Arguments involving analytic continuation now enable both sides of this equation to be equated
to an entire function, E(α), say. Physical constraints on the behaviour of f (x), g(x) and k(x) as x → 0, and
correspondingly to their Fourier-transformed quantities in (7) as |α| → ∞, allows E(α) to be specified, and hence
H−(α) and F+(α), are uniquely determined. Fourier inversion finally yields the unknown function f (x).

3 Developments and applications of the technique

Interestingly, in their book, Carrier, Krook and Pearson [5] suggest that, in fact, Carleman (1892–1949) may have
first developed the method in as early as 1921.5 The authors, however, have been unable to substantiate this claim.
In 1934 Hopf published the book “Mathematical problems of radiative equilibrium” [7] which provides a lucid
account of the Wiener–Hopf technique in the context of the class of problems that first inspired the collaboration. It
was at the end of his contract with MIT that Hopf took up a full professorship at the University of Leipzig. On the
matter of Hopf’s return to Germany, Wiener was uncritical. He knew that, particularly when set against the United
State’s economic depression, the post offered to Hopf was both lucrative and offered social prestige beyond that
then available at MIT. He acknowledged that Hopf’s views were not strongly pro-Nazi and felt that the position was
better filled by a man of moderate views. Wiener feared, however, that Hopf’s acceptance would severely damage
his standing in the academic community. Indeed that seems to have been the case: in the years following the end of
the second World War, Hopf suffered a substantial decrease in popularity which led to the neglect of his work and
even to it being attributed to other mathematicians. It is, for example, suggested [8] that Hopf’s name was dropped
from the discrete version of the Wiener–Hopf equation, which is now referred to as the ‘Wiener filter’.

During the 1940s it was discovered that problems involving diffraction by semi-infinite planes/geometries could,
by using Green’s theorem, be formulated in terms of integral equations of the form of (1). The integral equation
could then be solved, as described above, by applying Fourier Transforms and using the Wiener–Hopf technique.
Although, somewhat cumbersome, the method provided a direct route for solving problems such as the famous
Sommerfeld half-plane problem [9], and practical applications of and extensions to the technique began to appear
frequently in the literature (see, for example, the now classic papers by Copson [10], Carlson and Heins [11,12] and
Levine and Schwinger [13]). It was not, however, until Jones [14] demonstrated that the method could be consider-
ably simplified by applying transforms directly to the boundary-value problem that the versatility and power of the
method began to be realised. Jones’ method by-passes the initial derivation of the semi-infinite integral equation of
the form (1) and yields directly the complex Wiener–Hopf functional equation (3).

4 It will be seen in the forthcoming articles in this Special Issue that sum and product factorizations of many scalar functions are
obtained in a straightforward manner by use of Cauchy’s integral formula.
5 Note that any Wiener–Hopf problem can be recast into a special class of Riemann–Hilbert problem defined on an infinite line. The
standard solution procedure is analogous to that discussed above, but there are a few differences including the application of Plemelj
formulae for the factorization step (see e.g. Muskhelivshvili’s classic book [6]). To the authors’ knowledge, the development of solution
methods for relevant Riemann–Hilbert problems do not pre-date Wiener and Hopf’s work.
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By the mid-1950s the method was well established and Ian N. Sneddon (1919–2000), a seminal figure in Scot-
tish applied mathematics [15] and solid mechanics in particular, realised the need for a research monograph on
the technique. Interestingly Sneddon, who was internationally recognised for his work on transform methods for
the solution of partial differential equations and the author of several outstanding textbooks on this subject, also
offered a major contribution to the field of mathematics through his work editing translations of major Russian
texts - many for the successful series “International series of monographs in pure and applied mathematics”. It was
in his capacity as editor of this series that he suggested to Ben Noble (1922–2006) that he might like to write a
research monograph on the technique, and the concept of this book may well have been conceived during the period
1952–1955 when both men worked at the University of Keele in the UK. It was not until 1958, however, (by which
time they were both in Glasgow) that the now classic textbook “The Wiener–Hopf technique”6 appeared. This book
has enduring popularity amongst all those who rank the Wiener–Hopf technique as a potent tool of the trade. Indeed,
one could almost say that it has become the ‘Bible’ of the Wiener–Hopf practitioner! The presentation of Noble’s
book may lack the polish of many classic texts; this, however, does not detract from its appeal, which is two-fold.
Not only does this book deal with the application of the Wiener–Hopf technique to problems involving semi-infinite
geometries, and comprehensively discuss a wide range of extensions to, limitations of and approximations to the
method, but on almost every page can be found an interesting and relevant ‘tit-bit’—neat factorizations are tucked
away alongside valuable references and a wealth of interesting ideas.

4 Extensions, variations and applications of the technique

Of course, during the 50 years that have elapsed since the first edition of Noble’s book, the method has advanced on
almost every front. At this point is is worthwhile remarking that the method is ideally suited to solve two-part two-
or three-dimensional boundary-value problems involving a governing equation (such as Laplace’s or Helmholtz’)
with mixed boundary conditions along one infinite coordinate line.7 That is, for a two-dimensional problem, one
condition for say, x < 0, y = 0 and a different condition for x > 0, y = 0. It is natural to ask what happens to the
Wiener–Hopf formulation for three seemingly simple variations (henceforth referred to as type I–III) of this geom-
etry. It is fair to say that curiosity about these variations has inspired and driven many of the recent developments
in Wiener–Hopf theory.

Type I geometry arises if the mixed conditions are imposed for x < 0 and x > 0 but at different values of
y. For many such problems this results in coupled Wiener–Hopf equations that can be expressed in matrix form.
Matrix Wiener–Hopf equations arise from a huge variety of models in a multitude of areas, including mathematical
physics, fluid and solid mechanics, wave diffraction and even mathematical finance. This class represents one of
the biggest growth areas in the study and development of the Wiener–Hopf technique. Matrix Wiener–Hopf kernels
are fundamentally distinct from their scalar counterparts in that there is no algorithmic approach to determining
the factorization (4) of the transformed kernel [16]. Exact factorization can be achieved for matrices with certain
special features: those that are upper (or lower) triangular in form; those that are of Khrapkov–Daniele, i.e., com-
mutative, form (see [17–20]); those whose elements comprise meromorphic functions [21,22]; kernels with special
singularity structure that allows the Wiener–Hopf equation to be recast into uncoupled Riemann–Hilbert problems
[23–25]; and N × N matrices with special algebraic or group structure [26–28]. For more details on exact matrix
kernel factorization the interested reader is referred to the last mentioned article and to references cited in [29].

In general, however, this class of problems is, as yet, intractable to exact techniques. For this reason a number
of approximate methods of kernel factorization have been developed since the 1950s. Most schemes address scalar
factorization using a variety of direct ad-hoc and rational approximate approaches [30–33], including a novel use of
the method of matched asymptotic expansions [34] to simplify the kernel. For matrix kernels containing exponential

6 The full title of Noble’s book is actually “Methods based on the Wiener–Hopf technique for the solution of partial differential
equations”.
7 This coordinate may be temporal as well as spatial.
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phase-type factors an integral equation approach may be used to solve the system of Wiener–Hopf equations (see
e.g. [35]). Abrahams has successfully employed Padé approximants to obtain explicit exact factorizations of both
approximate scalar [36] and matrix kernels. The latter approach has allowed a number of long-outstanding problems
to be solved recently [29,37,38].

A type II geometry arises if one confines the boundary data to be specified along y = 0 but allows a three-part
condition, for example, different conditions for each of x < −a, x < |a| and x > a. In this case, a modified
Wiener–Hopf equation is obtained which is distinct from the usual formulation in that it contains three unknown
functions (each analytic in specified regions of the complex plane) and cannot be solved exactly using the usual
analytic continuation arguments. The solution to such problems can, however, be cast as a pair of coupled integral
equations which may be solved approximately in certain limiting cases [4,39]. It is not untypical for type I and
type II variations in geometry to occur together; in such cases a modified matrix W–H equation results which can
usually only be solved by approximate methods (see e.g. [40]). It is worthwhile noting that for three-part prob-
lems involving propagation in closed waveguides, a mode-matching approach offers a convenient alternative; see
e.g. [41]. This method enables problems that combine both type I and type II features to be reduced to an infinite
system of linear algebraic equations that can be numerically solved by truncation. It is, however, inapplicable to
problems of infinite extent in the direction orthogonal to the waveguide axis, i.e., when there are radiation terms in
the far field.

Type III geometry arises when the abrupt change of boundary condition is no longer confined to the ‘in-plane’
situation. Thus, for example, one condition may hold for x < 0, y = 0 and the other for x = 0, y > 0 producing a
corner (or wedge) which, in this case, is of interior angle π/2 but could be of arbitrary angle. The seminal articles to
address the scattering of incident waves in a wedge with non-simple boundary conditions were by Maliuzhinets [42],
and Williams [43]. Working independently, they both considered a wedge with impedance boundary conditions and
used a Sommerfeld integral representation of the diffracted field to reduce the boundary-value problem to a pair of
functional difference equations of the form

{sin X − sin s}f (s ± β) − {sin s + sin X}f (−s ± β) = 0, (8)

where 4β is the wedge angle and X is a constant which is related to the physical properties of the wedge boundaries.
Maliuzhinets solved these by introducing a new special function (now referred to as the Maliuzhinets function)
whilst Williams used the Barnes double-gamma function.8 The solution method involves deriving a function f (s)

that both satisfies (8) and, reminiscent of the Wiener–Hopf technique, has no singularities in a vertical strip in the
complex s-plane.

The relationship between the functional difference-equation method of solution for wedge problems, and the
Wiener–Hopf technique is easily shown for a wedge of angle π (in which case β = π/4 in (8)). Indeed, Abra-
hams and Lawrie [44] used this relationship to recast the problem of factorizing a particular class of Wiener–Hopf
kernels by formulating a difference equation representation for the factors. For arbitrary angle the relationship
between the two methods is less obvious. In recent papers, however, Daniele [45,46] has demonstrated the direct
equivalence between the method of Maliuzhinets for wave scattering in a wedge with impedance barriers [42] and
Khrapkov–Daniele commutative matrix kernel factorization.

Maliuzhinets’ work has been advanced in a number of directions by various Russian scientists in recent years;
see, for example, the excellent review by Osipov and Norris [47] and works by Budaev [48], Bernard [49],
Osipov [50], Lyalinov and Zhu [51]. In particular, the development of the functional difference-equation method
for solving problems in a wedge-shaped domain with boundaries that are described by high-order conditions (such
as those modelling a membrane or elastic plate) is a significant, and non-trivial extension [52–54]. Building upon
these works, mathematicians have more recently focused their attention on three-dimensional scattering problems
involving conical geometries [55–59]. It is an interesting and open challenge to understand the relationship between
the methods developed for the conical problems and standard Wiener–Hopf analysis.

8 Since the Maliuzhinets functions may be expressed in terms of the Barnes double-gamma functions the methods of Maliuzhinets and
Williams are essentially equivalent.
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5 Wiener–Hopf special issue

As mentioned earlier, an enormous variety of physically important problems can be cast into equations of
Wiener–Hopf form, and all have the characteristic feature of distinct boundary conditions defined on disjoint lines
or line segments. Depending on the given problem, such boundary conditions may be defined in space or time, and
may range over discrete or continuous independent variables. The Wiener–Hopf technique has found application
in an very wide variety of research areas, including the diffraction of acoustic, elastic and electromagnetic waves,
crystal growth [60], fracture mechanics, flow problems [61], diffusion models [62], geophysical applications [63]
and mathematical finance. A simple search of the science literature will reveal the many thousands of articles that
have employed Wiener and Hopf’s elegant method.

This Special Issue of the Journal of Engineering Mathematics is presented to mark the 75 years since the
Wiener–Hopf technique was first published [3]. The articles contained herein are not chosen to indicate the current
state-of-the-art regarding advanced Wiener–Hopf methods, for example on matrix Wiener–Hopf factorization, as
this would be neither useful nor particularly interesting for a general readership. Also, the Issue does not aim to
offer a complete collection of current areas where the Wiener–Hopf technique has found application; this would
demand several volumes, rather than a single issue! Instead, the following collection of articles serves to present the
readership of the Journal of Engineering Mathematics with a small sample of cutting-edge works in the field—it
offers a set of interesting applications of the Wiener–Hopf technique, together with a couple of papers demonstrating
how the technique can and has been extended.

The article by Antipov and Willis discusses constant crack growth in a viscoelastic material, with emphasis on
the field around the crack tip. Solid mechanics in general, and fracture mechanics in particular, is a subject in which
the Wiener–Hopf technique has proved an immensely useful tool. This is because the field quantities are strongly
dominated by points of rapid or instantaneous change in boundary conditions, in the vicinity of which Wiener–Hopf
or related techniques are ideally suited. This point of view is reinforced in the article by Norris and Abrahams in
which crack-growth is again studied. In this case the crack growth model is somewhat simpler but the solution
method employs matched asymptotic expansions as well as the Wiener–Hopf technique in order to examine the
stability of running waves along the propagating crack tip.

Diffraction theory is another area in which the field variables are dominated by points where the geometry or
boundary conditions change abruptly, and this may perhaps be the reason why it has found the most application
for the Wiener–Hopf technique. It is natural therefore that papers are included on this topic. Rawlins considers a
model of reflection and transmission of acoustic waves in a bifurcated, impedance-lined waveguide—a problem
which leads to a standard scalar Wiener–Hopf equation. In contrast, Lyalinov and Zhu examine wave scattering by
a semi-transparent impedance cone. The boundary-value problem is recast as a second-order functional difference
equation9 which class, as mentioned earlier, was shown by Daniele [45] bear a close relationship with matrix Wie-
ner–Hopf systems. Here, however, the authors choose an alternative evaluation approach, employing the numerical
solution of a Fredholm integral equation.

The article by Green et al. addresses an important problem in mathematical finance, namely the pricing of dis-
cretely monitored barrier options. For simplicity, the authors investigate European options in a Gaussian Black–
Scholes formulation. Via Fourier and z-transforms the problem is reduced to Wiener–Hopf form, and an exact
solution is obtained. This article is indicative of the substantial interest in the Wiener–Hopf technique in this new
and burgeoning area of applied mathematics.

Aero-acoustics is another topic in which researchers have made excellent use of the Wiener–Hopf technique
over some three or more decades. Computational methods to extract the very small sound field from a dominant
background flow field are fraught with difficulties, and so analytical methods have proved extremely useful. Ri-
enstra, a senior practitioner in this area, presents the 2007 annual Lighthill paper of the Journal of Engineering
Mathematics. In it he discusses sound scattering in a flow over the interface between hard and soft impedance
cylindrical boundaries. Of particular interest is the predicted onset of instability in the model.

9 Equivalent to a Carleman boundary-value problem for analytic vectors.
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Finally, the article by Shanin and Doubravsky discusses a new approach which can be seen as either a generalisa-
tion of the Wiener–Hopf technique or as an alternative method. The scheme involves, for problems of a particular
class, extending ‘physical space’ so that it is multi-sheeted. By this means a field solution may be written down
which, when restricted to the principal sheet, satisfies the necessary jump conditions at the boundaries.

To conclude, it is interesting to note, on flicking through some of the many biographies of Wiener and Hopf
(e.g. [64]), that few authors give the Wiener–Hopf technique the prominence that it deserves, preferring to focus
on other aspects of the works of these two great men. Yet, the Wiener–Hopf technique has enabled the solution of
numerous timely and physically relevant problems and, furthermore, has acted as a catalyst for the generation of
many sophisticated extensions and variations of the method. Wiener and Hopf would surely be pleased to know
that, 75 years after its conception, the Wiener–Hopf technique remains a source of inspiration to mathematicians,
physicists and engineers working in many diverse fields. To quote Wiener “Mathematics is too arduous and unin-
viting a field to appeal to those to whom it does not give great rewards.” Thankfully, he and Hopf developed a tool
by which less prodigious scientists are able to reap a few such rewards!
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